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Fallacy of the 500-year Flood: A Cautionary Note on Flood
Frequency Analysis

Scott A. Lecce
Department of Geography
East Carolina University

The flood of 1999 on the Tar River in eastern North Carolina was the largest in nearly 100 years of
stream flow records, where recurrence interval estimates at several gaging stations exceeded 500 years.
Nevertheless, the estimation of recurrence intervals for low frequency, large magnitude floods in-
volves considerable uncertainty. This paper uses annual flood records from four gaging stations in
the Tar River basin to demonstrate the level of inaccuracy associated with flood frequency analysis
(FFA). The margin of error (90% confidence interval) for recurrence interval estimates of large
floods on the Tar River are suggestive of the inaccuracy of flood frequency curves, which show that
the 100-year flood may be under or overestimated by as much as 1.5-2 times. Although FFA is
necessary for the effective management of floodplains, estimates of discharge for various recurrence
intervals should be evaluated in the context of several significant limitations: they are often based on
short records, the underlying assumptions are routinely violated, and the margins of error are usually

large.

Introduction

Torrential rainfall from hurricanes Dennis and
Floyd produced the great flood of 1999 that was the
most costly disaster in the history of North Carolina.
Many news accounts touted the event as the “flood
of the century” and reported the probability of
experiencing such an event as one in 400 or 500 years
(e.g, Royal 2000). Unquestionably, the magnitude of
the flood was exceptionally large, however, the
temptation to assign a probabilistic definition to the
flood provides an opportunity to reexamine flood
frequency analysis and the accuracy of recurrence
interval estimates. The accuracy with which low
frequency, large magnitude events like the 100-year
flood are estimated has important implications for
floodplain management because current federal flood
insurance programs are linked to the 100-year
floodplain. The purpose of this paper is to assess the
difficulties inherent in flood frequency analysis using
examples drawn from the Tar River basin in North
Carolina.

Background: A Primer on Flood Frequency
Analysis

Flood frequency analysis (FFA), or extreme value
analysis, is based on the notion that the magnitude
and frequency of extreme events can be estimated by
fitting theoretical probability distributions to flood

events (Gumbel 1941, 1958). Estimates are made of
the probability that a certain discharge will be equaled
or exceeded in any given year. This is usually applied
to the annual flood, the largest peak discharge of each
year of record, and is expressed as the exceedence
probability p. The inverse of the exceedence probability
(1/p) is the recurrence interval or retum period T. For
example, if the calculated exceedence probability fora
peak discharge of 50,000 ft*/s is 0.02, there is 2 2%
chance in any given year that this discharge will be
equaled or exceeded. The recurrence interval for this
example is 50 years, which means that over a long
petiod of time the 50-year flood (50,000 ft*/s) will
occur an average of once every 50 years. Itisimportant
to recognize that the recurrence interval implies nothing
about the time sequence of floods. In other words, it
does not mean that the 50-year flood will occur exactly
every 50 years. In fact, the 50-year flood could be
equaled or exceeded in successive years or more than
once in the same year.

Although the recurrence interval and the
exceedence probability are the most commonly used
probability estimates associated with floods, they only
provide probabilities for individual years. If we want
to know the probability of a flood magnitude
occutring once over some longer timperiod, then:
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whete Pis the probability that an event will occur once
during a time period of nyears and pis the exceedence
probability. The probability of more than one event
occurring over a time petiod greater than one year could
also be calculated using the binomial distribution:

@ p= (o) PP

where Pis the probability that an event will occur more
than onceduring a time petiod greater than one year, n
is the time period (years), y is the number of
occurrences (i.e., floods), and p is the exceedence
probability. For example, using equation 1 the
probability of the 50-year flood occurring once during
the duration of a typical home mortgage (30 years) is
0.45 (Table 1). So while there is only a 2% chance of

experiencing a 50-year flood in a single year, the chance
of this event occurring once over a 30 year period is
much higher (45%). During a human life time of 70
years, there is more than a three-in-four chance that
the 50-year flood will be equaled or exceeded (p =
0.76). Even a 500-year flood with a 0.2% chance of
occurring in a single year, has a 13% chance of occurring
once during a 70 year time span. It seems likely that
the public perception of flood risk would be quite
different if probabilities were stated using equation 1
because it demonstrates that although large floods
may be unlikely in any single year, the odds are fairly
high that a large flood will occur over an extended
petiod of time.

The objective of FFA is to relate the magnitude
of flood events to their frequency of occurrence
through the use of probability distributions (Chow
etal. 1988). Although many statistics are based on the
normal distribution, flood seties are not normally
distributed. Instead, flood distributions are negatively

Table 1. Percentage probability of the N-year flood occurring during a particular time span.

N = Return Period (yrs)

Time Span
(yrs) S 10 20 50 100 200 500 1000
] 20 10 5 2 1 - - -
2 3 19 10 4 2 1 - -
5 67 41 23 10 5 2 1 -
10 89 65 40 18 10 5 2 1
20 99 8 64 33 18 10 4 2
30 - 9% 19 45 26 14 6 3
50 - 9 92 64 39 2 10 5
100 - - 99 87 63 39 18 10
200 - - - 98 87 63 33 18
500 - - - - 9 92 63 39
1000 - - - - - 99 8 63

Modified from Smith and Ward (1;998).



The North Carolina Geographer

31

Recurrence Interval (yrs)

1.01 11 14 2 333 10 100
100,000 ¢ . T T : r : T
[ Tar River at Tarboro o@a
1897-1999 (27
@@
0
(3
(]
10,000 | .
] L
=
2 50
=)
o 0
O Blom
A Gringorten
0O Weibull
1’000 1 1 —d i i i i
99.9 99 90 70 50 30 10 1

Exceedence Probability (%)
Figure 1. The flood series for the Tar River at Tarboro plotted using different plotting position formulas.

skewed, that is, small floods occur more often than
large floods. Nevertheless, there is little theoretical
rationale to guide the selection of the most
appropriate, negatively skewed, probability
distribution. In fact, different dismibutions are used
by the United States (log-Pearson Type III) and the
United Kingdom (log-Gumbel or Extreme Value
Type II), and the selection of the log-Pearson Type
III distribution by the U.S. Water Resources Council
(1981) was met with considerable opposition (Benson
1968, 1969; Kisiel 1969). The method of moments
or maximum likelihood estimates are used to fit the
probability distribution to the empirical data. This
produces a flood frequency curve that is used to
estimate the discharge of any n-year event. Although
the method of maximum likelihood is considered
superior to the methods of moments for fitting the

data to a patticular probability distribution, the former
is more computationally complex.

In order to assure that the theoretical (fitted)
probability distribution fits the flood series, the
empirical data are plotted on specially designed
probability paper that linearizes the flood frequency
curve for a particular distribution. Quantitative
measures such as the chi-squared statistic and the
Kolmogorov-Smitnov test may be used to assess
which distribution best fits the data, however, a
graphical comparison is often equally useful.
Probability paper cannot be constructed for the log-
Pearson Type III distribution because a different
probability scale would be needed for each value of
the coefficient of skewness, therefore, lognormal
probability paper is usually used. The data are plotted
by calculating plotting positions, which assign a
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Table 2. Gaging record and drainage area for stations in the Tar river basin.

Period Record  Drainage
of Length Area
Station Gage ID Record (yrs) (mi’)
Little Fishing Creek near White Oak 02082950 1960-1999 40 177
Tar River at US 401 at Louisburg 02081747 1964-1999 36 427
Tar River at NC 97 at Rocky Mount 02082585 1977-1999 23 925
Tar River at Tarboro 02083500 1897-1900, 98 2,183

1906-1999

probability value to each flood discharge to be
plotted. The most common plotting position used
for floods is the Weibull formula:

n+1
® 1

where nis the number of floods, m is the rank
of each flood (ranked from largest to smallest
where the largest is m = 1), and p s the inverse
of equation 3. Although the Weibull formula
remains widely used in hydrology (U.S. Water
Resources Council 1981), it has been criticized
for under-estimating the recurrence interval of
large magnitude floods (Cunnane 1978). A va-
riety of alternative plotting position formulas
may be used, many of which have the general
form:

+1-2
@ T="ma

where the parameter 2 = 0 for Weibull’s for-
mula, a2 = 0.375 for Blom’s, and 2 = 0.44 for
Gringorten’s (Chow et al. 1988). Figure 1 shows
that the plotting positions calculated by equa-
tion 4 can be significantly different for the larger
magnitude floods. In order to obtain unbiased
plotting positions, Cunnane (1978) found that
Blom’s plotting position should be used for the
normal (or lognormal) distribution and
Gringorten’s for the Gumbel (Extreme Value
Type I). The value of a for the log-Pearson
Type III distribution depends on the value of
the coefficient of skewness, with 2 > 0.375 for
positively skewed data, and a2 < 0.375 for nega-
tively skewed data (Chow et al. 1988).

Data

Historical records of annual floods at four
stations in the Tar River basin were obtained from the
USGS (Table 2; Figure 2). The USGS has published
preliminary discharge estimates for the 1999 flood at
each of the stations, which represent a range of drainage
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Figure 2. Map of the Tar River basin, North Carolina, showing the locations of the four USGS gaging stations.
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areas and record lengths. Flood frequency curves
were produced by fitting the log-Pearson Type III
distribution to the data using the method of
moments. Blom’s formula (a2 = 0.375 in equation 4)
was used to plot the data because it is closer to being
unbiased than Weibull’s. Confidence limits were
calculated following the procedures outlined in Chow
etal. (1988).

Results

FFA assumes that the period of record sampled
is representative of the distribution of annual floods

Recurrence interval (yrs)

that would occur over a very long period of time.
This is, of course, unlikely because record lengths are
usually less than 50 years and seldom as long as 100
years. Confidence limits around the flood frequency
curve define the degree of statistical uncertainty
associated with recurrence interval estimates detived
from the curve. Figure 3 shows 5% and 95%
confidence limits for the flood frequency curves at the
four stations in the Tar River basin. Thatis,thereisa
90% chance that the curve at a given recurrence interval
should be located between these confidence limits.
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Figure 3. Flood frequency curves (solid lines) and 90% confidence limits (dashed lines) on lognot-
mal probability paper for four gaging stations in the Tar River basin. Data plotted using Blom’s
formula.
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The range of discharge between the confidence
limits is indicative of the relative inaccuracy of flood
frequency curves. For example, the 100-year flood
discharge for the Tar River at Tarboro (which has an
unusually long record at 97 years) is 40,868 ft*/s. The
confidence limits indicate, howevet, that there is 2 90%
chance that the 100-year flood lies between 30,362 ft*/
sand 67,960 ft*/s, a range of 37,598 ft*/s. Increasing
the confidence interval to 95% or 99% would increase
this range substantially. Furthermore, the logarithmic
axes used in Figure 3 provide a misleading visual
display of changes in the confidence interval as the

recurrence interval increases. When plotted on
arithmetic probability paper (Figure 4), the confidence
interval increases exponentially for the larger recurrence
intervals. Thus, there is a large degree of statistical
“uncertainty” associated with recurrence interval
estimates of large flood discharges, even with large
data sets like the Tar River at Tarboro. The technique
produces good results for the small floods, but not
for the large events with which we are most interested.
Because obtainingimproved estimates of large floods
would require a much longer petiod of record, this
problem is largely unavoidable.
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Figure 4.Flood frequency curves (solid lines) and 90% confidence limits (dashed lines) on an arith-
metic probability plot for four gaging stations in the Tar River basin. Data plotted using Blom’s

formula.
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Figure 5. Flood frequency curves for the Tar River at Tarboro.
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Figure 6. Historical variations in annual flood magnitudes for the Tar River at Tarboro.
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Table 3. Flood frequency estimates for the Tar River at Tarboro, 1897-1949, 1950-1998.

1897-1949 1950-1998 Change
Recur- 5% 95% 5% 95% 5% 95%
rence Conf.  Conf. Conf. Conf. Conf. Conf.
Interval Q Limit  Limit Q Limit  Limit Q Limit Limit
(yrs) (ft'/s)  (fls)  (ft'/s) (f'rs)  (ft'fs)  (ft’/s) (%) (%) (%)
1.01 5764 3,629  7.607 4190 2431 5,729 -27  -33  -25
2 14,123 11463 17.271 13,989 11.641 16,934 -1 -2 -2
5 21,537 17.587 28.461 19,545 16,215 25.359 -9 -8 -11
10 27.466 21,847 39.103 22,829 18.633 31,050 -17  -15  -21
25 36,211 27.584 56,865 26.551 21,214 38,008 -27 -23 -33
50 43.724 32,190 73.754 29,056 22.882 42962 -34 -29 -42
100 52,144 37.106 94,231 31.360 24,377 47,695 -40 -34 -49
200 61.598 42390 118970 33,479 25,723 52,186 -46 -39 -56

The annual flood series for the Tar River at
Tarboro can be used to illustrate another element of
statistical uncertainty associated with FFA. If this series
was split in half, the 48 year and 49 year sub-series
would still be longer than those at most USGS gaging
stations. If these sub-seties were representative of
the long-term distribution of flood discharges, they
should plot similatly in Figure 5. Cleatly, this is not
the case. Because many more large floods were
experienced during the first half of the century (Figure
6), the flood frequency curve calculated for the 1897-
1949 period would produce a 100-year flood discharge
of 52,144 ft* /s, while the 1950-1998 series would give
2 100-year flood discharge of only 31,360 ft*/s (Table
3). Furthermore, the 100-year flood for the 1897-
1949 period is not even within the 90% confidence
interval for 1950-1998 series (24,377-47,695 ft*/s).
Thus, if the collection of gaging station data had been
initiated in 1950, rather than 1897, the 100-year
discharge would be 9,508 ft*/s lower than that
obtained using the full record (1897-1998), and 20,784
ft*/s lower than that for the 1897-1949 period.

Although FFA assumes that the flood series is
stationary (i.e., the mean and variance are constant

through time), periods of high rainfall and drought
appeatr to cluster. Such non-stationarity in the historical
record might be explained by climatic trends or cycles.
The allocation of the flow of the Colorado River,
which began in 1922 with the partitioning of water
rights between the upper basin states and the lower
basin states, provides a useful example of decade-
scale variability of stream flows and adverse effects on
water management decisions. The apportionment
of water rights on the Colorado River was,
unfortunately, based on records from an unusually
wet period. Average stream flow during 1896-1930
was much higher (17 million acre-feet) than that from
1931-1965 (13 million acre-feet). Nevertheless, flows
during this anomalous petiod played an important
role in the over-appropriation of the river’s water
between competing states (Graf 1985). Non-
stationarity in the flood seties may also be generated
by a variety of human activities such as urbanization,
deforestation, agriculture, channelization, levees,
damming by road crossings, and human-induced
global warming, Theseall suggest that historical flood
records might not be a good guide to future flood
risks.
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Figure 7. Effect of adding the 1999 flood on flood frequency estimates.

A fundamental problem with FFA is that flood
records are too short to estimate low frequency events
accurately. Because flood distributions are negatively
skewed, few observations exist for the large events
that are used to fit the high end of the flood frequency
curve. This may be illustrated by adding the 1999
flood to the flood seties at the four gaging stations in
the Tar River basin (Figure 7). The magnitude of the
100-year flood increases at each station, from a
minimum of 18% to a maximum of 54% (Table 4).
Although the 1999 flood would be treated as an outlier
by the USGS (U.S. Water Resources Council 1981) at
three of the four stations (exception: Tar River at US
401 at Louisburg), the fact remains that a single large
flood, even one that passes the outlier test, would

increase recurrence interval estimates substantially.
This effect is even more pronounced where the
record length is short.

Another fundamental assumption of FFA is that
the flood series is homogeneous, that is, the
underlying population of floods is generated by only
one type of event. Despite this, most hydrologists
recognize that flood series consist of mixed
populations, and thus, violate the homogeneity
assumption (Hirschboeck 1988). For example, Diehl
and Potter (1987) and Knox (1988) have shown that
failing to separate the flood series into seasonal sub-
populations (i.e., summer thunderstorm floods and
spring snowmelt floods) can give unrealistic estimates
of the magnitude and frequency of floods. In the Tar
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Table 4. Pre-and post-Floyd 100-year discharge estimates.
Pre-Floyd Post-Floyd Change
5% 95% 5% 95% 5% 95%
Conf.  Conf. Conf. Conf. Conf. Conf.
Q Limit  Limit Q Limit  Limit Q Limit Limit
Station (f%s)  (ft/s) (ft’fs) (ffs)  (fs)  (ftls) (%) (%) (%)
Little Fishing Creek near White Oak 14,106 9,000 30,903 21,767 12,641 56,399 54 4] 83
Tar River at US 401 at Louisburg 22,198 15,630 40,571 26,753 18,161 52,247 21 16 29
Tar River at NC 97 at Rocky Mount 25.291 18,309 44,124 32,980 22,593 63,278 30 23 43
Tar River at Tarboro 40,868 30.362 67,960 48,302 34,679 85,638 18 14 26

River basin, and elsewhere in the southeastern U.S.,
mixed distributions can be a problem because floods
are generated by a variety of meteorological
mechanisms (Lecce 20002, 2000b). For example,
hurricanes are often responsible for generating the
largest floods on record in North Carolina
(Zembrzuski etal. 1987). Although most would agree
that separating flood seties into homogeneous sub-
populations would improve flood frequency estimates,
this is rarely done in practice (Knox 1988).

Conclusion

A review of probabilistic estimates of flood
frequency showed that although large floods are
unlikely in any single year, the odds are considerably
higher that a large flood will occur over an extended
petiod of time. An examination of annual floods at
four stations in the Tar River basin, North Carolina,
illuswrates the difficulties inherent in estimating the
recurrence intervals of large floods using traditional
flood frequency analysis. Flood frequency estimates
are sensitive to large floods, particularly where flood
records are short, and 90% confidence limits suggest
that the 100-year flood discharge may be under or
overestimated by as much as 1.5-2 times. The gaged
petiod of record may also not be representative of the

long-term distribution of flood discharges if cyclic
variations in climate are significant.

Because flood distributions are negatively
skewed, because we are interested in that part of the
distribution with which we are most uncertain (i.e.,
high magnitude, low frequency events), and because
flood records are inevitably too short to effectively
deal with the infrequent events, flood frequency
estimates should be regarded as best guesses based
on historical data. Although this paper has focused
on the degree of uncertainty associated with
estimates of the 100-year flood, attempting to
estimate recurrence intervals for larger magnitude
events like the flood of 1999 is fraught with even
more uncertainty. Perhaps the most meaningful
description of the flood of 1999 is the catch-phrase
“the flood of the century”. With this, there can be
no debate.
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