
Introduction
Floods are one of the major natural hazards that

cost lives, cause damage to property, and disrupt social
and economic activities. The ability to map the flood
extent correctly can provide critical information for
immediate flood relief activity, and pre- and post-
flood mitigation. It is possible to use optical and radar
remote sensing data to map the flood extent because
the water and non-water surfaces, such as soil and
vegetation, have distinctive signatures in the data.
Because the optical sensor lacks the ability to penetrate
vegetation canopies, its usage in densely forested areas
can be limited. On the other hand, synthetic aperture
radar (SAR) data are able to penetrate the canopies
(Richards, 1987), and have been widely used in the
mapping of flood extent (e.g., Imhoff et al. 1987,
Hess et al. 1995, Melack and Wang 1998, Bourgeau
et al. 2001, Wang 2003).

When using the SAR data for inundation
mapping in forested environments one should be
cautious with two facts. First, due to the enhanced
double bounced trunk-ground interactions when a
forested area is flooded, a stronger radar return has
been observed as compared to forested area where
the ground is nonflooded.  Second, because of the
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An adaptive filter was developed to reduce speckles and to preserve the boundaries (e.g., a flooded/nonflooded bound-
ary) on a synthetic aperture radar (SAR) image, and hence to improve the accuracy on the inundation extent mapping
using the SAR data. Based on the counts of pixels in each category within a moving kernel, the filter used different
filtering approaches to reduce the speckles and retain the boundaries. As an example, the authors used the original,
median-filtered, and adaptive-filtered Japanese Earth Resource Satellite – 1 (JERS-1) SAR data to map a flood extent
on the North Carolina coastal floodplain, and to investigate the effectiveness of the adaptive filtering through a com-
parison study of the derived flood extents. Spatial correlation analysis and accuracy evaluation indicated that the adaptively
filtered SAR data achieved higher accuracy on the inundation maps than either the median-filtered or the original SAR
data.
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coherent processes of data processing used to create
the SAR data (e.g., Ulaby et al. 1982), there are
speckles or abnormal bright or dark spots on the
SAR data and the speckles are a severe problem for
interpretability of SAR data (Ulaby et al. 1982). The
speckles or bright spots may be mistakenly
interpreted as flooded forests. To reduce or remove
the speckles, various spatial filters (e.g., Lee 1981,
Lee et al. 1991, Lee et al. 1997, Jensen 2000) in
addition to the commonly used median filter have
been devised based on the mechanisms that create
the speckles. Lee et al. (1994) provided a detailed
review of the speckle filtering of SAR data. For
example, Wang (2003) utilized a 7x7 median filter to
reduce the speckle in studying the seasonal change
of inundation on the North Carolina coastal
floodplains using the Japanese Earth Resource
Satellite – 1 (JERS-1) SAR data (http://
www.eorc.nasda.go.jp/JERS-1). One problem with
the median filter is that it can smear the flooded/
nonflooded boundaries in open areas or forested
environments. The smearing effect results because
the filter always outputs the median value within a
moving filtering kernel and ignores the distribution
of the pixel values within that kernel, even though
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the image the pixel values and distribution change.
Thus, the first, second, and third populous categories
vary. Three situations and adaptive methods are
considered when output a filtered pixel value:

a) If the first populous category includes at least
60% of pixels within the kernel, then the kernel is
at the homogeneous case of the first populous
category. The center pixel (to be adaptively filtered)
is assigned to the first populous category and its
pixel value is output as the average value of all the
pixels belonging to the first populous category.
Therefore, a speckle is reduced if the center pixel
does not belong to the first populous category or
the pixel is an outlier of the first category.
b) If the first populous category includes less than
60% of the pixels within the kernel, but the first
and second populous categories combined
include at least 70% of the pixels, the kernel is
considered in the boundary situation of the first
and second populous categories. To retain the
boundary (first and then to de-speckle), the
center pixel should be assigned as the first or
second populous category depending on the
relationships between the original value of the
center pixel and the two categories’ backscatter
coefficient ranges. Using the classification
algorithms (§2.3), one can divide the entire range
of backscatter coefficient into three regions
(Figure 1). The rules to separate the water/
nonflooded area (W/NFA) and the nonflooded
area/flooded forest (NFA/FF) are two dividing
lines. There are three possible combinations of
the first and second populous categories:

1) The first and second populous categories
are water and nonflooded area (not necessarily
in that order). In this situation, if the center
pixel’s original value is less than the W/NFA
dividing value, the center pixel will be assigned
as water and its output value will be the
average value of all the pixels that belong to
the water category. Otherwise, the center pixel
will be assigned as nonflooded area and its
output value will be the average value of all
the pixels of the nonflooded area category.
2) The first or second populous category is
nonflooded area or flooded forest. In this case,

the distribution may consist of important
information about the speckles and boundaries. To
overcome the median filter’s shortcoming on
smearing the boundaries, an adaptive filter that
utilizes the counts of pixels in each category within
a kernel has been developed. The filter uses different
approaches according to the counts in order to
effectively reduce the speckles and retain the
boundaries at the same time. Thus, the objectives of
this study were to: 1) develop the adaptive filter, 2)
apply the filter to the JERS-1 SAR data in mapping a
flood extent on the North Carolina coastal
floodplain, 3) evaluate the filter’s effectiveness of the
speckle removal and boundary retention through a
comparison study of the derived flooded extents
from the original, median-filtered, and adaptive-
filtered SAR data, and finally 4) investigate the
accuracy of the inundation maps.

Analysis
An adaptive filter

The adaptive filter is a spatial filter that moves a
pixel at a time from left to right one line at a time. The
output is a new value for each filtered pixel produced
by analyzing the counts of pixels of each category within
the kernel in the hope to reduce the speckle and retain
the boundary. Because there are three categories (open
water, flooded forest, and non-flooded area) involved,
the pixels within a kernel (e.g., 3x3, 5x5, 7x7, etc.) can
be in a homogenous situation of one category, a
boundary situation of two different categories, or a
mixed situation of all three categories. The adaptive
filter can detect which situation the kernel is in by
analyzing the counts of pixels that belong to each
category within the kernel, and then use different
methods to output new values accordingly.

Based on the classification algorithm to be
described, the pixels within a moving kernel are
classified into one of the three categories (the actual
pixel value on the input image is not changed).  The
number of pixels in each category is counted and
ranked from the most to the least. The category having
the most number of the pixels is the first populous
category, the category that includes the second most
pixels the second populous category, and so on. It
should be noted that when the kernel moves cross
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if the center pixel’s original value is less than
the NFA/FF dividing value, the center pixel
will be assigned as nonflooded area and its
output value will be the average value of all
the pixels of the nonflooded area category.
Otherwise, the center pixel will be assigned
as flooded forest and its output value will be
the average value of all the pixels that belong
to the flooded forest category.
3) The first and second populous categories
are water and flooded forest (not necessarily
in that order). In this situation, the distances
from center pixel’s original value to the W/
NFA dividing value (D

O-W/NFA
) and to the

NFA/FF dividing value (D
O-NFA/FF

) will be
compared (Fig. 1). If D

O-W/NFA
 is less than D

O-

NFA/FF
, the center pixel will be assigned as water

and its output value will be the average of all
pixels of the water category. Otherwise, the
center pixel will be assigned as flooded forest
and its output value will be the average of all
pixels of the flooded forest category.

c) If neither a) nor b) is true, the kernel will be in
an area where all three categories are present. Then,
the center pixel will output its original value as
the new value. In this case, the original value is
preserved; this approach should retain an edge.

It should be noted that in implementation, for a
3x3 kernel, 60% and 70% of a total of 9 pixels are 5
and 6 pixels, respectively. For a 5x5 kernel, the 60%

and 70% of 25 pixels are 15 and 18 pixels,
respectively, and so on so forth.

Study area and datasets
The study area outlined is on the floodplain of

the Tar/Pamlico River, North Carolina, covering
part of Pitt County on the west and Beaufort County
on the east (Fig. 2). As the Tar River expands into
the sound, the river is called the Pamlico River. The
study area is about 128 km2. Based on the statewide
landuse and land cover layer created by the North
Carolina Center for Geographic Information and
Analysis, there are fifteen landuse and land cover
types. Bottomland forests/hardwood swamps and
cultivated areas are dominant.

Two sets of data were used: the JERS-1 SAR data
and USGS color infrared digital orthorectified quarter
quadrangles (DOQQs). The SAR is an L-band (24
cm wavelength) HH (horizontally transmitted and
horizontally received) sensor on board the JERS-1
satellite launched into space by the National Agency
of Space and Development of Japan (NASDA) in
1992. The SAR has a 35º off nadir incidence angle,
and its image has a 75 km swath width with a nominal
18 x 18 m ground spatial resolution. The SAR
collected global radar images until October 1998
when it ceased operation (http://
www.eorc.nasda.go.jp/JERS-1). Through a sponsored
program by the NASDA to East Carolina University,
the JESR-1 SAR data are available to this study. The

Figure 1. The distances from the original value of the center pixel to the water/nonflooded area (W/NFA) and
nonflooded area/flooded forest (NFA/FF) dividing lines.
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Figure 2. JERS-1 SAR image acquired on 3 November 1994 shows portion of the floodplain of the Tar/Pamlico
River. The curved and dark signature is the river. The study area is about 128.0 km2.

SAR data were acquired on 3 November 1994 and
10 June 1995, respectively. On the SAR images, the
dark curve is the Tar River, which runs from the
northwest corner to the southeast corner. The bright
areas along the river banks are flooded forests, upland
forests are in gray, and scattered patches of dark areas
are flat surfaces, such as fields, bare soil, and pasture
lands (Figure 2). The SAR images have been re-
sampled to a 12.5 x 12.5 m resolution and absolutely
calibrated by the NASDA. The conversion between a
pixel intensity value (I) of the SAR image and
backscatter coefficient ( 0, in Decibel or dB) is:

The DOQQs created in 1998 are digital
photographic data with a spatial resolution of 1 x 1
m. Due to its high resolution, water bodies, river
channel, banks, upland forests, and some flooded
forests can be easily identified. The DOQQ data in
conjunction with limited ground observations are
used to identify training and test sites for the water,
nonflooded area, and flooded forest categories, so
that the supervised classification algorithms for the
SAR data can be used and their classification
accuracy evaluated.

σ 0(dB) = 20.0× log
10

I – 85.34
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Analytical method
The analytical approaches enabled us to: 1)

model inundation extents using the original, median-
filtered, and adaptive-filtered SAR data, 2) compare
the extents spatially, and 3) perform an accuracy
assessment of the extents. To map the inundation
extent, the SAR data were classified into three
categories: open water, non-flooded area, and flooded
forests based on the intensity of a pixels’ backscatter
coefficients. In general, the flat surfaces (such as an
open water body) lead to a low backscatter coefficient.
Flooded forest area has a high backscatter due to the
double bounce interactions between a tree trunk and
underneath water surface. The backscatter coefficient
of non-flooded forest, crop fields, and pasture lands
is in between.

To develop the classification algorithms, the SAR
data were first filtered using a 5x5 median filter.
Because of the temporal variation in inundation
extents of the study area caused by the variation of
river’s discharge and flow condition, the training (as
well as test) sites for the two dates of SAR data were
identified separately. Then, using the identified 15
training sites for each of the 3 categories (a total of 45
sites for each date), we developed supervised
classification rules on a pixel-by-pixel basis. On the 3
November 1994 SAR image, if a pixel’s backscatter is

• <_ -13.60 (dB), it is classified as open water,
• > -13.60 dB but <-5.68 dB, it is classified as

non-flooded area, and
• >_ -5.68 dB, it is classified as flooded forest.

On 10 June 1995 SAR data, if a pixel’s
backscattering coefficient is

• <_ -12.30 dB, it is classified as open water,
• > -12.30 dB but <-5.24 dB, it is classified as

non-flooded area, and
• >_ -5.24 dB, it is classified as flooded forest.

Next, the classification rules were applied to the
original, median-filtered, and adaptive-filtered SAR
data of 1994 and 1995 to create inundation maps.
Then, the maps were compared non-spatially using
descriptive statistics of each classified category, and
spatially on a pixel-by-pixel basis. The spatial

comparison created a new layer based on the pixel-
by-pixel agreement or disagreement of the two
classified images. Table 1 shows all 9 possible outcomes
of the agreement and disagreement of the comparison.
For instance, if the same pixel (location) on both
inundation maps was classified as water, a zero was
recoded for that location on the output layer. The 0s,
4s, and 8s represent the agreement and the other values
represent the disagreement. Thus, the ratio of the sum
(of the 0s, 4s, and 8s) to the total number indicates
the degree of agreement. It should be noted that three
classified images are created and three comparisons
are done at each date. Finally, the accuracy of the
inundation maps is assessed using the selected test
sites. Figure 3 is the flowchart of the analyses.

Results
Figure 4 shows three classified images or

inundation maps using the SAR data on 3 November
1994. Non-flooded areas are represented by white,
the flooded forest areas by grey, and open water areas
and flat surfaces by black. The map derived from
the original SAR data is characterized by many
scattered dots and blocks, which is the result of the
speckles in the data. The river channel can barely be
recognized (Figure 4a). The map derived from the
median-filtered SAR data shows some visual
improvement having less scattered dots and blocks,
and the river channel and surrounding flooded forest
are some noticeable (Figure 4b c.f. 4a). The classified
image after the adaptive-filtered SAR data has much
less scattered dots and blocks, and the river channel
and surrounding flooded forests are somewhat clearly
delineated (Figure 4c). Similar observations for the
inundation maps using the original, median-filtered,
and adaptive-filtered SAR data on 10 June 1995 are
evident. In summary, the adaptively filtered SAR
data has the most visual improvement on the
classified images, and may have reduced the speckles
and at the same time retain the boundaries.

Table 2 summarizes the areas covered by each
category on both dates and clearly demonstrates
differences among the extent of each. For instance,
on 3 November 1994, the water area covered 23.9%,
21.15%, and 33.2% of the study area as derived from
original, median-filtered, and adaptive-filtered SAR



38 Zheng and Wang

Figure 3. Flowchart of the analysis.

Table 1. On an output layer created by a spatial comparison of two inundation maps on one date, numbers 0 to 8 are
used to recode the possible outcomes of the comparison on a pixel-by-pixel basis.

Inundation Map A

In
un

da
ti

on
 M

ap
 B

Water Flooded
Forest

Nonfloo-
ded Area

Water 0 1 2

Flooded
Forest

3 4 5

Nonfloo-
ded Area

6 7 8
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Figure 4. The inundation
maps derived from the origi-
nal (a), median-filtered (b),
and adaptive-filtered (c) SAR
data of 11/3/1994. Water is
shown in black, flooded for-
est in gray and nonflooded
area in white.
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data. Because the same classification algorithms were
used, the differences are the result of different
filtering techniques.

Spatial comparison layers of the three
inundation maps derived from 3 November 1994
and 10 June 1995 SAR data were then created. The
degree of spatial agreements between the classified
images derived from the original data and median-
filtered or the original data and adaptive-filtered data
is slightly lower than the degree of spatial agreement
of the two classified images derived from the filtered
data. Detailed percentages of the agreement or
disagreement among the classified images on the
two dates are summarized in Table 3. The spatial
comparison of the classified images shows that the
adaptive-filtered as well as median-filtered SAR data
may reduce the speckles, and could also preserve
the edges. Figure 5 shows, as an example, the spatial
comparison of the inundation maps derived from
the median-filtered and adaptive-filtered SAR data
acquired on 3 November 1994 (the other spatial
correlation layers are similar to this).  The agreement
and disagreement scattered widely; pixels classified
as the same category by both classified images are in
white, otherwise in black.

Finally, using 75 test sites (25 test sites for each
category) visually identified on the USGS DOQQs,
the classification accuracy was evaluated. Due to the
temporal change of the inundation extents, test sites
on 3 November 1994 and 10 June 1995 were selected
independently. Table 4 summarizes the results and
four findings are evident. First, the producer’s
accuracy and user’s accuracy (Jensen 1996) derived
from the adaptive-filtered or median-filtered SAR
data are higher than that derived from the original
SAR data for each category. Second, the accuracy
derived from the adaptive-filtered or median-filtered
SAR data increases or decreases for water or
nonflooded category on both dates. Third, the
adaptive-filtered SAR data has higher classification
accuracy than the median-filtered SAR data do on
both dates. Fourth, the adaptive-filtered SAR data
has the highest overall classification accuracy. Thus,
the adaptive-filter may be better than the median
filter in reducing SAR speckles and retaining edges.

Conclusion
An adaptive-filtering method has been

developed, which utilized the counts of the pixels of
three categories within a moving kernel in order to

Table 2. Statistic summaries of each category from the inundation maps derived from the original, median filtered, and
adaptive-filtered SAR data. The area is in km2. The percentage of each category of the total study area is in brackets.

11/3/94

06/10/95

Categories Original Median-Filtered Adaptive-Filtered

Water 30.56 [23.9%] 26.99 [21.1%] 42.56 [33.2%]

Nonflooded Area 70.37 [55.0%] 79.90 [62.4%] 59.65 [46.6%]

Flooded Forest 27.07 [21.1%] 21.11 [16.5%] 25.79 [20.2%]

Categories Original Median-Filtered Adaptive-Filtered

Water 25.30 [19.8%] 18.70 [14.6%] 23.58 [18.4%]

Nonflooded Area 65.79 [51.4%] 79.96 [62.5%] 70.63 [55.2%]

Flooded Forest 36.88 [28.9%] 29.30 [22.9%] 33.76 [26.4%]
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Figure 5. The spatial correlation between the inundation maps derived from the median-filtered and adaptive-filtered
SAR data on 3 November 1994. Pixels classified as same category on both maps are in white, otherwise, in black.

% in same (different) category

11/3/1994 Original vs. adaptive-filtered 72.36 (27.64)

Original vs. median-filtered 72.56 (27.44)

Median-filtered vs. adaptive-filtered 74.68 (25.32)

6/10/1995 Original vs. adaptive-filtered 66.50 (33.50)

Original vs. median-filtered 65.98 (34.02)

Median-filtered vs. adaptive-filtered 77.38 (22.62)

Table 3. Summary of the spatial agreement among classified images derived from the original, median filtered, and
adaptive-filtered SAR data on 3 November 1994 and 10 June 1995.
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Table 4. Error matrix and classification accuracy derived from the original, median-filtered and adaptive-filtered SAR
data on both dates.

(a) 3 November 1994. Overall accuracy, 62.5% (original), 70.0% (median-filtered), 74.5% (adaptive-filtered).

(b) 10 June 1995. Overall accuracy, 60.7% (original), 72.3% (median-filtered) 78.2% (adaptive-filtered).

Producer's accuracy (%) User's accuracy (%)

Original Open Water 74.6 75.3

Non-flooded Area 63.2 53.1

Flooded Forest 53.5 67.4

Median-Filtered Open Water 82.7 80.8

Non-flooded Area 74.4 60.2

Flooded Forest 56.6 78.6

Adaptive-filtered Open Water 87.9 75.9

Non-flooded Area 69.1 67.8

Flooded Forest 71.5 81.9

Producer's accuracy (%) User's accuracy (%)

Original Open Water 72.6 70.4

Non-flooded Area 59.1 53.6

Flooded Forest 54.4 62.8

Median-Filtered Open Water 81.8 84.8

Non-flooded Area 75.3 62.7

Flooded Forest 62.0 62.4

Adaptive-filtered Open Water 86.7 74.3

Non-flooded Area 71.2 65.0

Flooded Forest 75.5 86.3
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reduce SAR data speckles and to retain the boundaries.
It has been applied to classify two dates of JERS-1
SAR data into water, nonflooded area, and flooded
forest categories for a part of the Tar/Pamlico River
floodplain of North Carolina. The SAR data were
acquired on 3 November 1994 and 10 June 1995.
Comparisons of the inundation maps derived from
the original, median-filtered, and adaptive-filtered
SAR data showed that the adaptive-filtering method
reduced the speckles and preserved the boundaries
better than the median filter. In addition, the adaptive-
filtered SAR data had the highest overall classification
accuracy among the median-filtered and non-filtered
SAR data. Despite the success of the adaptive filter,
there are cautions. First, the adaptive filter depends
on pre-defined classification rules that are derived
from the training sites on the SAR data after a 5x5
median filtering. The error in the pre-defined
classification rules could introduce error in the
adaptive filtering method. The adaptive filter based
on the original data without pre-defined classification
rules should be of advantages, but might difficult to
developed due to the wide range of pixel values
(backscattering coefficients) within a moving kernel.
Second, the adaptive filter determines the filter
window’s situation only by counting the total number
of pixels in each category whereas the spatial
distribution within the filter window may provide
useful information for adjusting the filtering
algorithm. The information could improve the filter’s
ability to reduce speckles and preserve boundaries.
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